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Abstract

General-purpose operating systems, such as Linux, aedsiagly being used in embedded systems.
Computational resources are usually limited, and embegdszkssors often have a limited amount of
memory. This makes code size especially important. Thigpdescribes techniques for automatically
reducing the memory footprint of general-purpose opegatirstems on embedded platforms. The prob-
lem is complicated by the fact that kernel code tends to b glifferent from ordinary application code,
including the presence of a significant amount of hand-amittssembly code, multiple entry points, im-
plicit control flow paths involving interrupt handlers, aadignificant amount of indirect control flow via
function pointers. We use a novel “approximate decompitétiechnique to apply source-level program
analysis to hand-written assembly code. A prototype impletation of our ideas, applied to a Linux
kernel that has been configured to exclude unnecessaryaot@déns a code size reduction of over 25%.

1 Introduction

Recent years have seen increasing use of general-purpesating systems, such as Linux, deployed in
embedded contexts such as cell phones, media players, la@daansumer electronics [1]. This is due
in great part to technological trends that make it uneconahfor vendors to develop custom in-house
operating systems for devices with shorter and shorterclitdes. At the same time, however, these oper-
ating systems—precisely because they are general-purgmsdain features that are not needed in every
application context, and which incur unnecessary oveshead., in execution speed or memory footprint.
Such overheads are especially undesirable in embeddedsgmrs and applications because they usually
have resource constraints, such as a limited amount of merbus, the memory footprint of the code is
especially important, and a program that requires more mgthan is available will not be able to rdn.

This paper focuses on automatic techniques for reducingnttimory footprint of operating system
kernels in embedded systems. Such systems tend to havealglatatic configurations: at the hardware
end, they are limited in the set of devices with which thegiactt (e.g., a cell phone or digital camera will
typically not have a mouse interface); at the software emely tisually support a fixed set of applications
(e.g., we do not routinely download or build new applicasiaan a cell phone or digital camera). This
implies that an embedded system will typically use only sahthe functionality offered by a general-
purpose operating system. The code corresponding to theedrfunctionality is unnecessary overhead,
and should be removed. Some of this overhead can be remaupty 9y configuring the kernel carefully
so as to exclude as much unnecessary code as possible. Howetvall overheads can be removed in
this manner. For example, a given set of applications rignoman embedded platform will typically use
only a subset of the system calls supported by the operagstgrs; the code for the unused system calls is
then potentially unnecessary. Such unnecessary codellypiannot be eliminated simply by tweaking the
configuration files; additional analysis is required. Thig@r discusses how such analysis may be carried
out in order to identify code that can be guaranteed to beagssary. Specifically, this paper makes the
following contributions:

*This work was supported in part by NSF Grants EIA-0080123RaX113633, and CNS-0410918.
lvirtual memory is not always an option in embedded systemsn avhere it is available, the energy cost of paging out of
secondary storage can be prohibitive.
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Figure 1: An example call chain in the Linux kernel

1. It discusses issues that arise in binary rewriting of ajiey system kernels and discusses how they
may be handled.

2. It introduces a notion of “approximate decompilationatlallows us to apply source-level program
analysis to hand-written assembly code. This improvestbeigion of our analysis considerably, and
in a simple way, while ensuring that the safety of our trammefttions is not compromised.

There has been a significant body of work on code size redyctiith different objectives (e.g., reduc-
ing wire transmission time vs. reducing memory footprintikg execution), on different program repre-
sentations (e.g., syntax trees, byte code, or native cate) making different assumptions regarding the
requirement for runtime decompression and the availgimlithardware support for any such runtime de-
compression. See Beszédssal. [4] for a survey. Almost all of this work has been done in thateat

of application code. By contrast, the work described in gaper focuses on operating system kernels in
native code representation, and it aims to reduce theiimenmtnemory footprint. We do so using automatic
program analysis and transformations, with a minimum ofjpammer intervention in the form of code
annotations or other similar input. A prototype implemdiota of our ideas, applied to the Linux kernel
configured minimally so as to exclude all unnecessary cedahle to achieve a code size reduction of over
25%, on average, on the MiBench suite [9].

2 Background

OS kernel code tends to be quite different from ordinary igppbn code. A significant problem is the
presence of considerable amounts of hand-written asseoally that often does not follow the familiar
conventions of compiler-generated code, e.g., with reg@fdnction prologues, epilogues, and argument
passing. This makes it difficult to use standard compilexedatechniques for whole-system analysis and
optimization of kernel code. To deal with this problem, wesided to use binary rewriting for kernel
compaction. However, while processing a kernel at the pifearel provides a uniform way to handle
code heterogeneity arising from the combination of sounmecassembly code and legacy code such as
device drivers, it introduces its own set of problems. Fameple, it is necessary to deal with a significant
amount of data embedded within executable sections, iihplicressing requirements that constrain code
movement, and occasional unusual instruction sequenaes résult, binary rewriting techniques applicable
to application code do not always carry over directly to kéoode.

An especially important issue for code compaction is thatwitrol flow analysis, both intra-procedural
and inter-procedural. This is because in practice, mostetode size reductions arising from compaction
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Figure 2: Using approximate decompilation for program ysial

comes from the detection and elimination of dead and uneddelcode [6]. For soundness reasons, we
have to ensure that we only eliminate code that can be gwm@mtever to be needed during any future
execution. This means that imprecision in control flow asialglirectly affects the amount of code that can
be eliminated.

Unfortunately, control flow analysis in operating systemmiets is complicated by the interaction of two
separate problems. First, there are significant amountaraf-ritten assembly code, as mentioned above.
Second, operating system kernels often make extensivefusdii@ct function calls in order to enhance
maintainability and extensibility. The situation is ilteasted by Figure 1, which shows a particular frequently
executed chain of function calls within the Linux kernelresponding to thevrite() system call. It can be
seen that there are three indirect calls on the call pathingddom the top-level routinesystemcall() to
the deeper-level routindo_get write_access() This is a problem because static analyses are generaty qui
conservative in their treatment of indirect function callEach of these problems—hand-written assembly
and indirect function calls—is nontrivial in its own rigland the situation is exacerbated further by the fact
that they interact: the hand-written assembly code in anabipg system kernels may itself contain indirect
function calls, and identifying those targets requirestegialias analysis of the assembly code.

A final problem in dealing with control flow in operating systéernels is that not all entry points into
the kernel, and control flow within the kernel, are explicithere are implicit entry points such as system
calls and interrupt handlers, as well as implicit controlflarising from interrupts, that have to be taken
into account in order to guarantee soundness.

3 Pointer Analysis: Resolving Indirect Function Call Targets

As mentioned above, operating system kernels contain #isagmt amount of hand-written assembly code.
This makes program analysis problematic. On the one haralindewith hand-written assembly code
in a source-level or intermediate-code-level analysis éssy and awkward because of the need to inject
architecture-specific knowledge into the analysis—sucaliasing between registers (e.g., in the Intel x86
architecture, the registébal is an alias for the low byte of the registreax) and idiosyncrasies of various
machine instructions. On the other hand, if the analysism@émented at the assembly code or machine
code level, much of the semantic information present at thece level is lost—in particular, informa-
tion about types and pointer aliasing—resulting in oveidyservative analysis that loses a great deal of
precision.

One possible solution to this problem would be to decompigeiand-written assembly code back to
equivalent C source code that could then be analyzed byesdewel analysis. The problem with such an
approach is that it is not obvious that all of the kernel asdgmode can be reverse engineered back to
equivalent C source code; for example, “system instrustiam the Intel x86 architecture, which include
instructions such asldad interrupt descriptor table registerand “invalidate TLB entry, may not have

2In general, identifying the possible targets of indireatdtion calls is equivalent to pointer alias analysis, whik hard
problem both theoretically and in practice.



obvious C-level counterparts. Moreover, even in situaiahere this is possible, it can be complicated and
involve a great deal of engineering effort. Instead, we aa#i this problem using an approach we call
“approximate decompilation,” which maps hand-writtenessbly code back to C source files for analysis
purposes. The idea, illustrated in Figure 2, is that giveasaembly fildoo.s and a program analysi4, we
create a source fillwo“.c that has the property that ahranalysis ofoo”.c is a safe approximation of the
behavior offoo.s, even thoughoo”.c is not semantically equivalent foo.s. For example, if4 focuses on
control flow analysis, thefoo.c may elide those parts é6o.s that are irrelevant to control flow. We have
applied this approach to use a source-level pointer alialysis technique called FA-analysis to identify the
possible targets of indirect function calls. The remairmfehis section discusses how this is carried out.

3.1 FA Analysis

There is a large volume of literature on pointer alias anglysith a variety of assumptions, goals, and
trade-offs (see, for example, the discussion by Hind andl Ri@]). In general, these analyses exhibit a
trade-off between efficiency and precision: the greateptieeision, the greater the analysis cost, i.e., the
lower the efficiency. FA-analysis is a flow-insensitive @ttinsensitive pointer alias analysis, originally
due to Zhanget al. [18, 19], that is at the low end of this efficiency/precisioade-off. Milanoveet al. have
observed, however, that even though this analysis is nayalwery precise for general-purpose pointer
alias analysis, it turns out to be quite precise in practicédentifying the targets of indirect function calls
[14]. The authors attribute this to the fact that progransrgpically use function pointers in a few specific
and relatively simple stylistic ways.

3.2 Approximate Decompilation of Kernel Assembly Codefor FA Analysis

As Figure 2 suggests, the way in which approximate decotigrilas carried out depends in part on the
source-level analysis that will be applied to the resulsogrce files. This section discusses approximate
decompilation of assembly code in the Linux kernel code faraRalysis. For concreteness, we discuss
kernel assembly code on the Intel x86 architecture.

The hand-written assembly instructions in the Linux ketfials into two broad groups: (1) general-
purpose instructions that perform basic data movemenknaetic, logic, and program control flow opera-
tions, and (2) system instructions that provide supporbf@rating systems and executives [11]. We process
these instructions as follows:

— System instructions (the second group above) manipuldietioe hardware (or data related to the
hardware) and have no effect on pointer aliasing in the kexode. For pointer alias analysis, there-
fore, we simply ignore these instructions.

— Since FA analysis is flow-insensitive and context-indemsi instructions whose only effect is on
intra-procedural control flow, such as conditional and wational branches, have no effect on the
analysis. Inter-procedural control flow cannot be ignotemyever, since it induces aliasing between
the actual parameters at the call site and the formal paeasat the callee. Our decompiler therefore
ignores conditional and unconditional control flow instras whose targets are within the same
function, but translates inter-procedural control transf

— The remaining instructions are those that move data arse thhat perform arithmetic and logic oper-
ations. These instructions are translated to the correfpgroperations in C. For example, a register
load instruction, mov $0, %eax,’ is translated to an assignmemiax = 0'.

3A detailed discussion of FA-analysis is beyond the scopéisfgaper. The interested reader is referred to the origiapérs
on this analysis [14, 18, 19].



Our decompiler maps registers in the assembly code to glatsibles of typant with 32-bit values. For
example, the 32-bit registébeax is mapped to a variableax of typeint. Since we are only interested in
capturing potential aliasing relationships between dbjeend not necessarily the actual values computed,
we map the 16-bit and 8-bit registers (which are aliases i§ fd the 32-bit registers) into the appropriate
32-bit global. Thus, the 8-bit registétal and the 16-bit registe¥oax, which refer to the low 8 bits and
the low 16 bits of the 32-bit regist&beax respectively, are both mapped to the variaddex denoting the
32-bit registeRoeax.

Memory locations referenced in the assembly code are astett as global variables. Since there is
little type information available at the assembly level,deelare memory locations as having tyyEeMOBJ,
which denotes a word in mematy.An object spanning a series of memory locations in the assemb
code is treated as an array MEMOBJ in the generated C code. This is illustrated in Figure3(ahe T
segment of assembly code shown on the left side in Figure t3¢egn from the fileent r y. Sin the Linux
kernel, defines the system call table that contains the inmetddresses of all system call handlers. Since
sys_cal | t abl e spans a series of (initialized) memory locations in the ragdg code, we map it to
an (initialized) array in the generated C code shown on tjia side in Figure 3(a). Moreover, since the
symbols for the system call handlers are not themselvesatkiivent ry. S, they are declared &xt er n
objects in the generated C code. Before we start the actugbpanalysis, we scan the entire kernel source
code and match memory objects to functions so that the séewvek FA analysis can deal properly with
function pointers in the assembly code.

Functions in the assembly code are identified from symbdé taformation and mapped to functions
in the generated C code. Memory locations accessed thrbiegbtack pointer registébesp are assumed
to be on the stack; these are mapped to local variables inotihesponding C function. Since the value of
the stack pointer may change from one point to another in dde,cdifferent references to the same stack
location from different points in the code may use differdisplacements off the stack pointer. To handle
this, we track the location of stack regisesp. At the entry to a function, we assign a symbolic constant
denoting the entry value for the stack pointer. Then, eank the value of the stack pointer is changed—
either explicitly via an arithmetic operation or impligitvia apush or pop instruction—we update the
distance between the current stack pointer &ndhis allows us to map each data reference off the stack
pointer to an offset from the initial valué which can then be translated to a reference to a local \arfab
For example, in the assembly code in Figure 3(b), thepiusth instruction access the initial stack location
at/. We define a local variablé,OCAL 1 for this stack location and translate the instruction irdsignment
statementLOCAL1 = 0’in C, then update the value &&sp to reflect the effect of thpush instruction.
The secongbush instruction, which writes to locatioh— 4, is then translated into an assignment statement
to a different local variablé& OCAL2.

Actual parameters to a call are identified similarly: if timeléx of a data reference, computed as de-
scribed above, indicates that it is deeper in the stack taimitial stack pointer valué, then the location
being referred to is an argument that has been passed tortleatciwunction. In this manner, by examining
the references to actual parameters in the body of a funotiercan determine the number of arguments
it takes, and thereby generate a function prototype in thede.cSuch prototypes are then used by the FA
analysis to identify aliasing between actuals and formalsontrol transfer to a symbd is translated as
a function call if either the instruction is @ll instruction, or if the targef' is a function. For example,
in the segment of assembly code in Figure 3(c), there are éfevances to stack locations that are deeper
than the initial stack pointer value. From this, we infertttieere are two parameters needed by function
error code. Since the symboérr or _code has been identified as a function, the instructipmp er-

4Our implementation defines this type aypedef MEMOBJ int; '
5This discussion refers to base-displacement addresshighis typically used to access scalar variables on thé s&imilar
reasoning can be used to process more complex addressirgs typitally used for local arrays.



FA
entry.S entry " .c
data extern MEMOBJ sys_exit;
ENTRY(sys_call_table) extern MEMOBJ sys_fork; fs/read_write.c
long SYMBOL N AME(sys_exit) extern MEMOBJ sys_read; === == 3 > ssize_t sys_read(..)
long SYMBOL_NAME(sys._fork) {
Jlong SYMBOL_NAME(sys_read) MEMOBJ sys_call_table[] = {
&sys_exit, }
&sys_fork,
&sys_read,

¥

(a) Decompilation of memory locations

Stack
ENTRY (overflow) void overflow () { <= SPinjt = |
VALUE LOCALL; LOCALL | %esp = |
pushl $0 ’
pushl $ SYMBOL_NAME(do_overflow) VALUE L?C.ALZ; LOCAL2 | %esp=|- 4
jmp error_code LOCALL =0;
LOCAL2 = &do_overflow;
error_code (LOCAL2,LOCALL);
}
(b) Decompilation of stack locations for local variables
Stack

error_code: void error_code (VALUE PARAM1,
VALUE PARAM2) { | PARAM2 | 0x24(%esp)

movl 0x24(%esp), %esi
movl 0x20(%esp), %edi esi = PARAM2; sp -
edi = PARAML; < SPinit = |

PARAM1 | 0x20(%esp)

(c) Decompilation of stack locations for call paramters

Figure 3: Examples of approximate decompilation of assgrodtle to C code for FA analysis.

ror_code’ in the assembly code in Figure 3(b) is translated into timefion call ‘er r or code( LOCAL2,
LOCAL1) ’in the C code in Figure 3(t.

4 ldentifying Reachable Code

4.1 Reachability Analysis

For each indirect procedure call in the kernel, the sousgellFA analysis produces a set of possible call
targets for that indirect call. Our kernel binary rewritakes this information as an input and constructs a
program call graph for the entire kernel.

Unlike ordinary applications, an operating system kermegltains multiple entry points. These entry
points are the starting points for our reachability analydle classify kernel entry points into four cate-
gories: (1) the entry point for initializing the kernel (fibre Linux kernel, this is the functiost ar t up_32),

(2) system calls invoked during the kernel boot processin{8jrupt handlers, and (4) system calls invoked
by user applications. Once the entry points into the keraetbeen identified, our reachability analysis per-

®In the assembly code in Figure 3(b), sijaep is used instead afal | for control transfer, no return address is stored on the
stack.



Procedure Reachability-Analysis

worklist < functions that are entry points into the kernel
while sizeof orklist) > 0 do
f < Remove a function fronworklist
Mark f as reachable
for every indirect/direct call targetof f do
if cisstaticA cis not executed based on profileen
continue
elseif cis not marked as reachalileen
Add ¢ into worklist
end if
end for
end while

Figure 4: The improved reachability analysis algorithm

forms a straightforward depth-first traversal of the pragill graph to identify all the reachable functions
in the kernel.

4.2 Improving the Reachability Analysis

During the initialization phase of kernel bootup (e.g.,dvefthei ni t program in Linux begins execution),
execution is deterministic because there is only one attiread and execution depends only on the hard-
ware configuration and the configuration options passedigfirdooot command line. In other words, the
initialization code can be considered to be “static” in tlatial evaluation sense [12]. This means that if
the configuration is not changed, we can safely remove atiglination code that is not executed. We use
this idea to further improve our reachability analysis.

Our goal is to identify the static functions in the kerned,. j.functions whose execution is completely
determined once the command-line configuration optionstlamdhardware are fixed. To this end, we take
advantage of a Linux kernel feature used to identify inzetion code, most of which is not needed, and
can be reclaimed, after initialization is complete. In jaitar, the Linux kernel simplifies this reclamation
by segregating data and code used only for initializatido fwo sections in the ELF binary:t ext . i ni t
and. dat a. i ni t . Once the initialization of the kernel finishes during bantine kernel frees the memory
pages occupied by these two sections to save physical keerabry.

We use this knowledge to initialize the setsiétic functions to those appearing in thé ext . i ni t
section. We then propagate this information as follows t dither functions that are notinthé ext . i ni t
section but whose execution can be inferred to be compldiisrmined given the command-line configu-
ration options and hardware setup:

1. Mark all functions in t ext . i ni t section astatic

2. Based on the call graph of the Linux kernel, mark all fumtsithat are not called by any other function
asstatic

3. If all the direct and indirect callers of a functidn are static then markF' asstatic Repeat this
process until there are no changes.

Once we have computed the set of functions that are condidet@estatic during kernel initialization,
we use the results to improve our reachability analysis as/shin Figure 4. The improvement is that when
a potentially reachable function is found, if the functismrmarkedstaticand if, based on profile data, it was
not called during kernel initialization, then we do not atltbithe set of reachable functions.
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Exception handling code.

[0 Exception handler searchesx_t abl e with the addres4.;, where the exception oc-
curred, to find the associated fixup code addtess

[0 Control branches from the exception handler to the fixup code

[0 Control branches from the fixup code to the instruction feiftg the locationL; where
the exception had occurred.

Figure 5: Control flow during the handling of exceptions ia ttinux kernel

4.3 Handling Exception Handlers

In order to identify all reachable code in the kernel, it i$ anough to consider ordinary control transfers,
which are explicit in the code: we also have to take into anta@ontrol transfers that are implicit in the
exception handling mechanisms of the kernel. For this, veeréme the exception table in the kernel.
Locations in the kernel where an exception could be gergiate known when the kernel is built. For
example, the kernel code that copies data to/from user sp&o®wn as a potential source for a page fault
exception. The Linux kernel contains an exception tahkx _t abl e, that specifies, for each such location,
the code that is to be executed after handling an exceptidditi&nally, a special sectionf i xup, contains
snippets of code that carry out the actual control transtanfthe exception handlers to the appropriate
destination locations. The flow of control when handling aoeption is shown in Figure 5: after the
exception handler deals with an exception from an address searches_ex_t abl e with L, as the key,
finds the associated addrdssof the corresponding fixup code, and jumpsLto The key point to note
here is that the control flow path frolm to L, is not explicit in the code, but is implicit inex _t abl e. It
is necessary to take such implicit execution paths into @tctor code compaction to ensure that we find
all reachable code. We do this by examining the exceptiole tahd adding pseudo-control-flow edges to
indicate such implicit control flow. For the example in Figd, we would add such an edge framto L.

5 Kernel Compaction

Once all the potentially reachable code in the kernel has lasmtified, code compaction can be carried out
by deleting unreachable code [6]. Further code size reshgitan be obtained by applying code factoring
to the reachable parts of the kernel, which entails ideinifyepeated code fragments and abstracting them
into procedures. However, applying these transformatioriee kernel code involves some subtleties. For
example, some kernel functions are required to be at spéigéit addresses, and cannot be moved. Another
issue is that some forms of procedural abstraction requineraory location be allocated to save the return



Benchmark set Programs No. of unique| No. of non-
system calls bootup system
calls
Auto./Industrial | basicmath, bitcount, gsort, susan 33 9
Consumer jpeg, mad, lame, tiff2bw, tiff2rgba, tiffdither, 46 11
tiffmedian, typeset
Network dijkstra, patricia (blowfish, CRC32, sha) 43 12
Office ghostscript, ispell, rsynth, stringsearch 57 15
Security blowfish, pgp, rijndael, sha 49 10
Telecomm adpcm, CRC32, FFT, gsm 39 11
Entertainment | jpeg, lame, mad 43 10
Cellphone blowfish, sha, CRC32, FFT, gsm, typeset 45 12

Table 1: Characteristics of the benchmarks used (from thigelih suite [9])

address of the procedure. We currently do not consider sodh fragments for procedural abstraction

within the kernel for two reasons. First, if a page fault asowhen accessing this location to store a return
address and the page tables have not yet been initializedetimel will crash. Second, since the kernel is
multi-threaded in general, using a single global locatian lead to incorrect results if one thread overwrites
the return address stored there by another thread; thisstleainthe memory allocation has to be done on a
per-thread basis, which complicates the implementatiehraduces its benefits.

6 Experimental Results

To get an accurate evaluation of the efficacy of our ideas, @gnbwith a minimally configured kernel
where as much unnecessary code as possible has been eunyatonfiguring the kernel carefully. For
our experiments, therefore, we configured the Linux 2.4&hd& to remove modules, such as the sound
card, video support, and network driver, that are not reguiio run our benchmarks. The size of the
resulting Linux kernel image, compiled witlpcc version 3.4.4 using the default makefile flags 002
-fom t-franme-pointer’,is 1,152,869 bytes. In order to simply the booting procekshe Linux
kernel, we modified the kernel boot up fil&i t t ab so that the Linux kernel will run in single user mode
(level 1). Based on the profile data, there are 81 differesiiesy calls called during the booting process.

We used programs from the MiBench suite [9], a widely usedfezly available collection of bench-
mark programs for embedded systems, to evaluate our aprdd@hMiBench suite is organized into six
sets of benchmarks, corresponding to different kinds ofexfdbd environments: Automotive and industrial
control, Consumer devices, Networking, Office automati®acurity, and Telecommunications; each of
these sets contains several different application prograkie augmented this with two additional sets: En-
tertainment, representing a multi-media consumer apgidor music and digital pictures; and Cellphone,
representing a cell phone with security features. Chaiiatitss of these sets are shown in Table 1.

Before we can carry out kernel compaction for any given betak set, we have to identify the system
calls that can arise from programs in that set. It is not ehagagxamine their executions using tools such as
strace since this may not cover all the execution paths in the @mogr nor is it enough to simply examine
the source code of the benchmarks for system calls, sinse #wtually call library routines that may contain
additional system calls not visible in the source code. \Weetlore analyze statically linked binaries of the
programs to ensure that we find all the system calls that maybked. This, however, causes the entire C
library to be linked in. We address this problem by first ciengyout a reachability analysis on the application
program binaries to identify and eliminate unreachablelyproutines (using a conservative approximation
to deal with indirect function calls) and then traversing tesulting whole-program control flow graph to



Kernel text.init section .text section Total

size (bytes)| ratio | size (bytes)] ratio | size (bytes) ratio
[ Original | 75,638 | 1.000 | 735139 | 1.000 | 810,777 | 1.000 |
Auto./Industrial 52899 0.699 548,146 0.746 601,045 0.741
Consumer 52915 0.700 550,607 0.749 603,522 0.744
Network 52899 0.699 548,209 0.746 601,108 0.741
Office 52915 0.700 549,245 0.747 602,160 0.743
Security 52899 0.699 548,868 0.747 601,767 0.742
Telecomm 52899 0.699 548,338 0.746 601,237 0.742
Entertainment 52899 0.699 549,885 0.748 602,784 0.743
Cellphone 52899 0.699 549,060 0.747 601,959 0.742
| GEOM, MEAN: | 0.699 | 0.747 | 0.742 |

Table 2: compaction result

determine the set of possible system calls. These data ansh Table 1: the third column of this table
gives the number of different system calls across all of tiegmams in each set of benchmarks, while the
fourth column gives, for each benchmark set, the numbergiésy calls not occurring in the set of system
calls invoked during the kernel bootup process. Once we tieveystem calls that may be invoked by a set
of programs, we use them to identify and eliminate unredehadxle in the kernel.

The results of code compaction are shown in Table 2. For eaobhmark set, we present three sets
of numbers; these give the amount of compaction achievethéort ext . i ni t section (the code used
for kernel bootup), thet ext section (the kernel code used during steady-state exeg¢utiad the total
amount of code.(t ext. i ni t and. t ext together). We are able to reduce the size of the kernel bootup
code by 30%, and the steady-state kernel code by just over @b8rall, the savings in code size come to
just under 26% on average.

Since the bulk of our code compaction is achieved throughdietification of unreachable code, the
amount of compaction achieved for each set of applicatibwsvs above depends on the particular set of
system calls made by the set of application programs. Torgielea of the extent to which our results might
generalize to other sets of embedded applications, we aealihe “popularity” of different system calls
across the MiBench suite. The popularity of a given systelinscm a set of programg is given by the
fraction of programs irP that uses. Intuitively, if different kinds of applications use veryfigrent sets of
system calls, i.e., many system calls have low populatiigntour results may not generalize well; on the
other hand, if different kinds of applications tend to havestty-similar sets of system calls, then we can
expect these results to generalize. The results are showigime 6. It can be seen that out of some 226
different possible system calls in our systénthere is a small core of 32 system calls that are used by every
program. Popularity drops off sharply outside this core Aéitof our benchmark programs, taken together,
refer to only 76 system calls, i.e., about a third of the te&tlof system calls.

This relative uniformity in system call usage across a wigaléety of applications helps explain the sur-
prising uniformity of our code compression results acrdissfahe benchmark sets. While the applications
themselves are very different in terms of their nature artkize, the popularity data shown in Figure 6
show that they do not differ from each other hugely in term#hefr interactions with the operating system
kernel: for example, they typically read data from some fifgecess that data, and write out the results.

"There were 259 syscall entries in our version of Linux; ob#e33 were not implemented (“sys syscall”), leaving a total
of 226. Other sources put the number of Linux system callshniigher: e.g., Wikipedia mentions “almost 300" systemscall
for Linux, while according tosyscal | s(2) in the Linux programmer’s manual, there are some 1,1@@egy calls listed in
[usr/src/linux/include/asm */unistd.h.
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Figure 6: System call “popularity” in embedded applicasion

Moreover, in addition to the system calls made by applicatiode, a significant number of system calls
are made from within the kernel itself. For example, the Eemakes 81 different system calls during the
bootup process. The overall result is that the set of “nootdgw’ system calls arising in the application code
is relatively small, and does not vary greatly from one bematk set to another (Table 1, col. 4). Because
of this, the compaction results for the different benchnssts tend to be similar.

7 Related Work

The work that is closest to ours is that of Chaeetal, who describe a system for code compaction of
the Linux kernel to reduce its memory footprint [5]. Our apgeh is more general, in that the Diablo
system described by Charedtal. relies on a modified compiler tool chain and requires speciabtations
(currently manually applied) to deal with hand-coded assgmFurthermore, the techniques we use, in
particular the use of approximate decompilation for progeanalysis, are quite different from theirs. Finally,
the code size reductions we obtain, of around 25% on aveaagajgnificantly higher than those of Chanet
et al, who report an overall code size reduction of about 19%;eniils is not entirely an apples-to-apples
comparison, because the set of application programs—hatgfore, the set of system calls—considered
by Chanetet al. were different from those we considered, it gives an appneie idea of the relative
compaction power of the two approaches.

We are not aware of a great deal of work on binary rewritinggerating systems kernels. Flowetsal.
describe the use of Spike, a binary optimizer for the Compiptya to optimize the Unix kernel, focusing
in particular on profile-guided code layout [7]. A number ekearchers have looked into specializing
operating system kernel code [13, 16, 15]. These generadlysed on improving execution speed rather
than reducing code size and therefore used techniques iffemedt from ours.

There is a considerable body of work on code compaction; &k=set al. give a comprehensive survey
[4]. Almost all of this work is in the context of applicatiorrggrams in high-level languages and does not
consider the issues that arise when dealing with an OS kernel

One of the technical issues of considerable importancede compaction of an OS kernel is that of re-
solving the possible targets of indirect function callsisTroblem resembles the problem of identifying the
possible targets of virtual method invocations in objetémted programs, which has received considerable
attention in the object-oriented community [2, 3, 8, 17].dWwf this work relies on using type information
to resolve the possible targets of a virtual method invocatiWe applied this idea of using type informa-
tion to determine possible targets of indirect calls in theul kernel but the results were disappointing,
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because the available type information is not discrimingagnough to give an acceptable level of precision
(especially when taking into account the possibility ofdygasts on pointers). The FA analysis proved to
be far more effective: a type-based signature matching/asisalve implemented gave, on average, about 96
targets per indirect function call in the Linux kernel; wkiA analysis, by contrast, the average number of
targets per indirect call is 10.

8 Conclusions

Because of the limited amount of memory typically availahlembedded devices, it is important to reduce
the memory footprint of the code running on such devices. s Taiper describes an approach to code
compaction of operating system kernels. We begin with treeofation that embedded systems typically
run a small fixed set of applications. This knowledge can hegl us identify the minimal functionality
required of the kernel code to support those applicatioistlaen to discard unnecessary code. We discuss
a number of technical challenges that have to be addressedién to make this work; in particular, we
describe a novel approach of “approximate decompilatitait &llows us to apply source-level program
analyses to hand-written assembly code. Our ideas haveilgémented in a prototype binary rewriting
tool that is able to achieve a code size reduction of over 2G%roalready minimally-configured Linux
kernel.
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