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Abstract

General-purpose operating systems, such as Linux, are increasingly being used in embedded systems.
Computational resources are usually limited, and embeddedprocessors often have a limited amount of
memory. This makes code size especially important. This paper describes techniques for automatically
reducing the memory footprint of general-purpose operating systems on embedded platforms. The prob-
lem is complicated by the fact that kernel code tends to be quite different from ordinary application code,
including the presence of a significant amount of hand-written assembly code, multiple entry points, im-
plicit control flow paths involving interrupt handlers, anda significant amount of indirect control flow via
function pointers. We use a novel “approximate decompilation” technique to apply source-level program
analysis to hand-written assembly code. A prototype implementation of our ideas, applied to a Linux
kernel that has been configured to exclude unnecessary code,obtains a code size reduction of over 25%.

1 Introduction

Recent years have seen increasing use of general-purpose operating systems, such as Linux, deployed in
embedded contexts such as cell phones, media players, and other consumer electronics [1]. This is due
in great part to technological trends that make it uneconomical for vendors to develop custom in-house
operating systems for devices with shorter and shorter lifecycles. At the same time, however, these oper-
ating systems—precisely because they are general-purpose—contain features that are not needed in every
application context, and which incur unnecessary overheads, e.g., in execution speed or memory footprint.
Such overheads are especially undesirable in embedded processors and applications because they usually
have resource constraints, such as a limited amount of memory. Thus, the memory footprint of the code is
especially important, and a program that requires more memory than is available will not be able to run.1

This paper focuses on automatic techniques for reducing thememory footprint of operating system
kernels in embedded systems. Such systems tend to have relatively static configurations: at the hardware
end, they are limited in the set of devices with which they interact (e.g., a cell phone or digital camera will
typically not have a mouse interface); at the software end, they usually support a fixed set of applications
(e.g., we do not routinely download or build new applications on a cell phone or digital camera). This
implies that an embedded system will typically use only someof the functionality offered by a general-
purpose operating system. The code corresponding to the unused functionality is unnecessary overhead,
and should be removed. Some of this overhead can be removed simply by configuring the kernel carefully
so as to exclude as much unnecessary code as possible. However, not all overheads can be removed in
this manner. For example, a given set of applications running on an embedded platform will typically use
only a subset of the system calls supported by the operating system; the code for the unused system calls is
then potentially unnecessary. Such unnecessary code typically cannot be eliminated simply by tweaking the
configuration files; additional analysis is required. This paper discusses how such analysis may be carried
out in order to identify code that can be guaranteed to be unnecessary. Specifically, this paper makes the
following contributions:

∗This work was supported in part by NSF Grants EIA-0080123, CCR-0113633, and CNS-0410918.
1Virtual memory is not always an option in embedded systems; even where it is available, the energy cost of paging out of

secondary storage can be prohibitive.
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Figure 1: An example call chain in the Linux kernel

1. It discusses issues that arise in binary rewriting of operating system kernels and discusses how they
may be handled.

2. It introduces a notion of “approximate decompilation” that allows us to apply source-level program
analysis to hand-written assembly code. This improves the precision of our analysis considerably, and
in a simple way, while ensuring that the safety of our transformations is not compromised.

There has been a significant body of work on code size reduction, with different objectives (e.g., reduc-
ing wire transmission time vs. reducing memory footprint during execution), on different program repre-
sentations (e.g., syntax trees, byte code, or native code),and making different assumptions regarding the
requirement for runtime decompression and the availability of hardware support for any such runtime de-
compression. See Beszédeset al. [4] for a survey. Almost all of this work has been done in the context
of application code. By contrast, the work described in thispaper focuses on operating system kernels in
native code representation, and it aims to reduce their runtime memory footprint. We do so using automatic
program analysis and transformations, with a minimum of programmer intervention in the form of code
annotations or other similar input. A prototype implementation of our ideas, applied to the Linux kernel
configured minimally so as to exclude all unnecessary code, is able to achieve a code size reduction of over
25%, on average, on the MiBench suite [9].

2 Background

OS kernel code tends to be quite different from ordinary application code. A significant problem is the
presence of considerable amounts of hand-written assemblycode that often does not follow the familiar
conventions of compiler-generated code, e.g., with regardto function prologues, epilogues, and argument
passing. This makes it difficult to use standard compiler-based techniques for whole-system analysis and
optimization of kernel code. To deal with this problem, we decided to use binary rewriting for kernel
compaction. However, while processing a kernel at the binary level provides a uniform way to handle
code heterogeneity arising from the combination of source code, assembly code and legacy code such as
device drivers, it introduces its own set of problems. For example, it is necessary to deal with a significant
amount of data embedded within executable sections, implicit addressing requirements that constrain code
movement, and occasional unusual instruction sequences. As a result, binary rewriting techniques applicable
to application code do not always carry over directly to kernel code.

An especially important issue for code compaction is that ofcontrol flow analysis, both intra-procedural
and inter-procedural. This is because in practice, most of the code size reductions arising from compaction
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Figure 2: Using approximate decompilation for program analysis

comes from the detection and elimination of dead and unreachable code [6]. For soundness reasons, we
have to ensure that we only eliminate code that can be guaranteed never to be needed during any future
execution. This means that imprecision in control flow analysis directly affects the amount of code that can
be eliminated.

Unfortunately, control flow analysis in operating system kernels is complicated by the interaction of two
separate problems. First, there are significant amounts of hand-written assembly code, as mentioned above.
Second, operating system kernels often make extensive use of indirect function calls in order to enhance
maintainability and extensibility. The situation is illustrated by Figure 1, which shows a particular frequently
executed chain of function calls within the Linux kernel corresponding to thewrite() system call. It can be
seen that there are three indirect calls on the call path leading from the top-level routinesystemcall() to
the deeper-level routinedo get write access(). This is a problem because static analyses are generally quite
conservative in their treatment of indirect function calls.2 Each of these problems—hand-written assembly
and indirect function calls—is nontrivial in its own right,and the situation is exacerbated further by the fact
that they interact: the hand-written assembly code in an operating system kernels may itself contain indirect
function calls, and identifying those targets requires pointer alias analysis of the assembly code.

A final problem in dealing with control flow in operating system kernels is that not all entry points into
the kernel, and control flow within the kernel, are explicit.There are implicit entry points such as system
calls and interrupt handlers, as well as implicit control flow arising from interrupts, that have to be taken
into account in order to guarantee soundness.

3 Pointer Analysis: Resolving Indirect Function Call Targets

As mentioned above, operating system kernels contain a significant amount of hand-written assembly code.
This makes program analysis problematic. On the one hand, dealing with hand-written assembly code
in a source-level or intermediate-code-level analysis is messy and awkward because of the need to inject
architecture-specific knowledge into the analysis—such asaliasing between registers (e.g., in the Intel x86
architecture, the register%al is an alias for the low byte of the register%eax) and idiosyncrasies of various
machine instructions. On the other hand, if the analysis is implemented at the assembly code or machine
code level, much of the semantic information present at the source level is lost—in particular, informa-
tion about types and pointer aliasing—resulting in overly conservative analysis that loses a great deal of
precision.

One possible solution to this problem would be to decompile the hand-written assembly code back to
equivalent C source code that could then be analyzed by source-level analysis. The problem with such an
approach is that it is not obvious that all of the kernel assembly code can be reverse engineered back to
equivalent C source code; for example, “system instructions” on the Intel x86 architecture, which include
instructions such as “load interrupt descriptor table register” and “invalidate TLB entry”, may not have

2In general, identifying the possible targets of indirect function calls is equivalent to pointer alias analysis, whichis a hard
problem both theoretically and in practice.
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obvious C-level counterparts. Moreover, even in situations where this is possible, it can be complicated and
involve a great deal of engineering effort. Instead, we dealwith this problem using an approach we call
“approximate decompilation,” which maps hand-written assembly code back to C source files for analysis
purposes. The idea, illustrated in Figure 2, is that given anassembly filefoo.s and a program analysisA, we
create a source filefooA.c that has the property that anA-analysis offooA.c is a safe approximation of the
behavior offoo.s, even thoughfooA.c is not semantically equivalent tofoo.s. For example, ifA focuses on
control flow analysis, thenfooA.c may elide those parts offoo.s that are irrelevant to control flow. We have
applied this approach to use a source-level pointer alias analysis technique called FA-analysis to identify the
possible targets of indirect function calls. The remainderof this section discusses how this is carried out.

3.1 FA Analysis

There is a large volume of literature on pointer alias analysis, with a variety of assumptions, goals, and
trade-offs (see, for example, the discussion by Hind and Pioli [10]). In general, these analyses exhibit a
trade-off between efficiency and precision: the greater theprecision, the greater the analysis cost, i.e., the
lower the efficiency. FA-analysis is a flow-insensitive context-insensitive pointer alias analysis, originally
due to Zhanget al. [18, 19], that is at the low end of this efficiency/precision trade-off. Milanovaet al. have
observed, however, that even though this analysis is not always very precise for general-purpose pointer
alias analysis, it turns out to be quite precise in practice for identifying the targets of indirect function calls
[14]. The authors attribute this to the fact that programmers typically use function pointers in a few specific
and relatively simple stylistic ways.3

3.2 Approximate Decompilation of Kernel Assembly Code for FA Analysis

As Figure 2 suggests, the way in which approximate decompilation is carried out depends in part on the
source-level analysis that will be applied to the resultingsource files. This section discusses approximate
decompilation of assembly code in the Linux kernel code for FA analysis. For concreteness, we discuss
kernel assembly code on the Intel x86 architecture.

The hand-written assembly instructions in the Linux kernelfalls into two broad groups: (1) general-
purpose instructions that perform basic data movement, arithmetic, logic, and program control flow opera-
tions, and (2) system instructions that provide support foroperating systems and executives [11]. We process
these instructions as follows:

– System instructions (the second group above) manipulate only the hardware (or data related to the
hardware) and have no effect on pointer aliasing in the kernel code. For pointer alias analysis, there-
fore, we simply ignore these instructions.

– Since FA analysis is flow-insensitive and context-insensitive, instructions whose only effect is on
intra-procedural control flow, such as conditional and unconditional branches, have no effect on the
analysis. Inter-procedural control flow cannot be ignored,however, since it induces aliasing between
the actual parameters at the call site and the formal parameters at the callee. Our decompiler therefore
ignores conditional and unconditional control flow instructions whose targets are within the same
function, but translates inter-procedural control transfers.

– The remaining instructions are those that move data and those that perform arithmetic and logic oper-
ations. These instructions are translated to the corresponding operations in C. For example, a register
load instruction, ‘mov $0, %eax,’ is translated to an assignment ‘eax = 0’.

3A detailed discussion of FA-analysis is beyond the scope of this paper. The interested reader is referred to the originalpapers
on this analysis [14, 18, 19].
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Our decompiler maps registers in the assembly code to globalvariables of typeint with 32-bit values. For
example, the 32-bit register%eax is mapped to a variableeax of type int. Since we are only interested in
capturing potential aliasing relationships between objects, and not necessarily the actual values computed,
we map the 16-bit and 8-bit registers (which are aliases of parts of the 32-bit registers) into the appropriate
32-bit global. Thus, the 8-bit register%al and the 16-bit register%ax, which refer to the low 8 bits and
the low 16 bits of the 32-bit register%eax respectively, are both mapped to the variableeax denoting the
32-bit register%eax.

Memory locations referenced in the assembly code are also treated as global variables. Since there is
little type information available at the assembly level, wedeclare memory locations as having typeMEMOBJ,
which denotes a word in memory.4 An object spanning a series of memory locations in the assembly
code is treated as an array ofMEMOBJ in the generated C code. This is illustrated in Figure3(a). The
segment of assembly code shown on the left side in Figure 3(a), taken from the fileentry.S in the Linux
kernel, defines the system call table that contains the function addresses of all system call handlers. Since
sys call table spans a series of (initialized) memory locations in the assembly code, we map it to
an (initialized) array in the generated C code shown on the right side in Figure 3(a). Moreover, since the
symbols for the system call handlers are not themselves defined inentry.S, they are declared asextern
objects in the generated C code. Before we start the actual pointer analysis, we scan the entire kernel source
code and match memory objects to functions so that the source-level FA analysis can deal properly with
function pointers in the assembly code.

Functions in the assembly code are identified from symbol table information and mapped to functions
in the generated C code. Memory locations accessed through the stack pointer register%esp are assumed
to be on the stack; these are mapped to local variables in the corresponding C function. Since the value of
the stack pointer may change from one point to another in the code, different references to the same stack
location from different points in the code may use differentdisplacements off the stack pointer. To handle
this, we track the location of stack registeresp. At the entry to a function, we assign a symbolic constantℓ

denoting the entry value for the stack pointer. Then, each time the value of the stack pointer is changed—
either explicitly via an arithmetic operation or implicitly via apush or pop instruction—we update the
distance between the current stack pointer andℓ. This allows us to map each data reference off the stack
pointer to an offset from the initial valueℓ, which can then be translated to a reference to a local variable.5

For example, in the assembly code in Figure 3(b), the firstpush instruction access the initial stack location
at ℓ. We define a local variable,LOCAL1 for this stack location and translate the instruction into assignment
statement ‘LOCAL1 = 0’ in C, then update the value of%esp to reflect the effect of thepush instruction.
The secondpush instruction, which writes to locationℓ−4, is then translated into an assignment statement
to a different local variableLOCAL2.

Actual parameters to a call are identified similarly: if the index of a data reference, computed as de-
scribed above, indicates that it is deeper in the stack than the initial stack pointer valueℓ, then the location
being referred to is an argument that has been passed to the current function. In this manner, by examining
the references to actual parameters in the body of a function, we can determine the number of arguments
it takes, and thereby generate a function prototype in the C code. Such prototypes are then used by the FA
analysis to identify aliasing between actuals and formals.A control transfer to a symbolS is translated as
a function call if either the instruction is acall instruction, or if the targetS is a function. For example,
in the segment of assembly code in Figure 3(c), there are two references to stack locations that are deeper
than the initial stack pointer value. From this, we infer that there are two parameters needed by function
error code. Since the symbolerror code has been identified as a function, the instruction ‘jmp er-

4Our implementation defines this type as ‘typedef MEMOBJ int;’.
5This discussion refers to base-displacement addressing, which is typically used to access scalar variables on the stack. Similar

reasoning can be used to process more complex addressing modes typically used for local arrays.
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init

.data
ENTRY(sys_call_table)
  .long SYMBOL_NAME(sys_exit)
  .long SYMBOL_NAME(sys_fork)
  .long SYMBOL_NAME(sys_read)
        ...

entry.S

  extern MEMOBJ sys_exit;
  extern MEMOBJ sys_fork;
  extern MEMOBJ sys_read;
         ...
  MEMOBJ sys_call_table[] = {
     &sys_exit,
     &sys_fork,
     &sys_read,
         ...
  };

ENTRY(overflow)
    pushl $0
    pushl $ SYMBOL_NAME(do_overflow)
    jmp error_code

void overflow () {
    VALUE LOCAL1;
    VALUE LOCAL2;
    LOCAL1 = 0;
    LOCAL2 = &do_overflow;
    error_code (LOCAL2,LOCAL1);
}

entry     .cFA

error_code:
    ...
 movl 0x24(%esp), %esi 
 movl 0x20(%esp), %edi
   ... 

void error_code (VALUE PARAM1,
                             VALUE PARAM2) {
   ...
   esi = PARAM2;
   edi = PARAM1;
  ...

LOCAL1

Stack

LOCAL2

....

SP

PARAM2

Stack

PARAM1

....

     ssize_t sys_read(..) 
     {
          ....
     }

fs/read_write.c

(c) Decompilation of stack locations for call paramters

= l

0x24(%esp)

0x20(%esp)

%esp = l

%esp = l - 4

initSP = l

(a) Decompilation of memory locations

(b) Decompilation of stack locations for local variables

Figure 3: Examples of approximate decompilation of assembly code to C code for FA analysis.

ror code’ in the assembly code in Figure 3(b) is translated into the function call ‘error code(LOCAL2,
LOCAL1)’ in the C code in Figure 3(b).6

4 Identifying Reachable Code

4.1 Reachability Analysis

For each indirect procedure call in the kernel, the source-level FA analysis produces a set of possible call
targets for that indirect call. Our kernel binary rewriter takes this information as an input and constructs a
program call graph for the entire kernel.

Unlike ordinary applications, an operating system kernel contains multiple entry points. These entry
points are the starting points for our reachability analysis. We classify kernel entry points into four cate-
gories: (1) the entry point for initializing the kernel (forthe Linux kernel, this is the functionstartup 32),
(2) system calls invoked during the kernel boot process, (3)interrupt handlers, and (4) system calls invoked
by user applications. Once the entry points into the kernel have been identified, our reachability analysis per-

6In the assembly code in Figure 3(b), sincejmp is used instead ofcall for control transfer, no return address is stored on the
stack.
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Procedure Reachability-Analysis

worklist← functions that are entry points into the kernel
while sizeof (worklist) > 0 do

f ← Remove a function fromworklist

Mark f as reachable
for every indirect/direct call targetc of f do

if c is static∧ c is not executed based on profilethen
continue

else if c is not marked as reachablethen
Add c into worklist

end if
end for

end while

Figure 4: The improved reachability analysis algorithm

forms a straightforward depth-first traversal of the program call graph to identify all the reachable functions
in the kernel.

4.2 Improving the Reachability Analysis

During the initialization phase of kernel bootup (e.g., before theinit program in Linux begins execution),
execution is deterministic because there is only one activethread and execution depends only on the hard-
ware configuration and the configuration options passed through boot command line. In other words, the
initialization code can be considered to be “static” in the partial evaluation sense [12]. This means that if
the configuration is not changed, we can safely remove any initialization code that is not executed. We use
this idea to further improve our reachability analysis.

Our goal is to identify the static functions in the kernel, i.e., functions whose execution is completely
determined once the command-line configuration options andthe hardware are fixed. To this end, we take
advantage of a Linux kernel feature used to identify initialization code, most of which is not needed, and
can be reclaimed, after initialization is complete. In particular, the Linux kernel simplifies this reclamation
by segregating data and code used only for initialization into two sections in the ELF binary:.text.init
and.data.init. Once the initialization of the kernel finishes during bootup, the kernel frees the memory
pages occupied by these two sections to save physical kernelmemory.

We use this knowledge to initialize the set ofstatic functions to those appearing in the.text.init
section. We then propagate this information as follows to find other functions that are not in the.text.init
section but whose execution can be inferred to be completelydetermined given the command-line configu-
ration options and hardware setup:

1. Mark all functions in.text.init section asstatic.

2. Based on the call graph of the Linux kernel, mark all functions that are not called by any other function
asstatic.

3. If all the direct and indirect callers of a functionF are static, then markF asstatic. Repeat this
process until there are no changes.

Once we have computed the set of functions that are considered to bestaticduring kernel initialization,
we use the results to improve our reachability analysis as shown in Figure 4. The improvement is that when
a potentially reachable function is found, if the function is markedstaticand if, based on profile data, it was
not called during kernel initialization, then we do not add it to the set of reachable functions.

7
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2

3

5

1L  :

2L  :

1L 2L

4

.text

.fixup

exception handler

__ex_table

find fixup addr
jmp fixup addr

...memory reference

error = −EFAULT
result = 0
jmp data reference

control transfer

Key:

① A memory exception atL1 causes control to branch to the exception handler.

② Exception handling code.

③ Exception handler searchesex table with the addressL1, where the exception oc-
curred, to find the associated fixup code addressL2.

④ Control branches from the exception handler to the fixup code.

⑤ Control branches from the fixup code to the instruction following the locationL1 where
the exception had occurred.

Figure 5: Control flow during the handling of exceptions in the Linux kernel

4.3 Handling Exception Handlers

In order to identify all reachable code in the kernel, it is not enough to consider ordinary control transfers,
which are explicit in the code: we also have to take into account control transfers that are implicit in the
exception handling mechanisms of the kernel. For this, we examine the exception table in the kernel.

Locations in the kernel where an exception could be generated are known when the kernel is built. For
example, the kernel code that copies data to/from user spaceis known as a potential source for a page fault
exception. The Linux kernel contains an exception table,ex table, that specifies, for each such location,
the code that is to be executed after handling an exception. Additionally, a special section,.fixup, contains
snippets of code that carry out the actual control transfer from the exception handlers to the appropriate
destination locations. The flow of control when handling an exception is shown in Figure 5: after the
exception handler deals with an exception from an addressL1, it searches ex table with L1 as the key,
finds the associated addressL2 of the corresponding fixup code, and jumps toL2. The key point to note
here is that the control flow path fromL1 to L2 is not explicit in the code, but is implicit inex table. It
is necessary to take such implicit execution paths into account for code compaction to ensure that we find
all reachable code. We do this by examining the exception table and adding pseudo-control-flow edges to
indicate such implicit control flow. For the example in Figure 5, we would add such an edge fromL1 to L2.

5 Kernel Compaction

Once all the potentially reachable code in the kernel has been identified, code compaction can be carried out
by deleting unreachable code [6]. Further code size reductions can be obtained by applying code factoring
to the reachable parts of the kernel, which entails identifying repeated code fragments and abstracting them
into procedures. However, applying these transformationsto the kernel code involves some subtleties. For
example, some kernel functions are required to be at specificfixed addresses, and cannot be moved. Another
issue is that some forms of procedural abstraction require amemory location be allocated to save the return

8



Benchmark set Programs No. of unique
system calls

No. of non-
bootup system
calls

Auto./Industrial basicmath, bitcount, qsort, susan 33 9
Consumer jpeg, mad, lame, tiff2bw, tiff2rgba, tiffdither,

tiffmedian, typeset
46 11

Network dijkstra, patricia (blowfish, CRC32, sha) 43 12
Office ghostscript, ispell, rsynth, stringsearch 57 15
Security blowfish, pgp, rijndael, sha 49 10
Telecomm adpcm, CRC32, FFT, gsm 39 11
Entertainment jpeg, lame, mad 43 10
Cellphone blowfish, sha, CRC32, FFT, gsm, typeset 45 12

Table 1: Characteristics of the benchmarks used (from the MiBench suite [9])

address of the procedure. We currently do not consider such code fragments for procedural abstraction
within the kernel for two reasons. First, if a page fault occurs when accessing this location to store a return
address and the page tables have not yet been initialized, the kernel will crash. Second, since the kernel is
multi-threaded in general, using a single global location can lead to incorrect results if one thread overwrites
the return address stored there by another thread; this means that the memory allocation has to be done on a
per-thread basis, which complicates the implementation and reduces its benefits.

6 Experimental Results

To get an accurate evaluation of the efficacy of our ideas, we begin with a minimally configured kernel
where as much unnecessary code as possible has been eliminated by configuring the kernel carefully. For
our experiments, therefore, we configured the Linux 2.4.31 kernel to remove modules, such as the sound
card, video support, and network driver, that are not required to run our benchmarks. The size of the
resulting Linux kernel image, compiled withgcc version 3.4.4 using the default makefile flags of ‘-O2
-fomit-frame-pointer’, is 1,152,869 bytes. In order to simply the booting processof the Linux
kernel, we modified the kernel boot up fileinittab so that the Linux kernel will run in single user mode
(level 1). Based on the profile data, there are 81 different system calls called during the booting process.

We used programs from the MiBench suite [9], a widely used andfreely available collection of bench-
mark programs for embedded systems, to evaluate our aproach. The MiBench suite is organized into six
sets of benchmarks, corresponding to different kinds of embedded environments: Automotive and industrial
control, Consumer devices, Networking, Office automation,Security, and Telecommunications; each of
these sets contains several different application programs. We augmented this with two additional sets: En-
tertainment, representing a multi-media consumer appliance for music and digital pictures; and Cellphone,
representing a cell phone with security features. Characteristics of these sets are shown in Table 1.

Before we can carry out kernel compaction for any given benchmark set, we have to identify the system
calls that can arise from programs in that set. It is not enough to examine their executions using tools such as
strace, since this may not cover all the execution paths in the programs; nor is it enough to simply examine
the source code of the benchmarks for system calls, since these actually call library routines that may contain
additional system calls not visible in the source code. We therefore analyze statically linked binaries of the
programs to ensure that we find all the system calls that may beinvoked. This, however, causes the entire C
library to be linked in. We address this problem by first carrying out a reachability analysis on the application
program binaries to identify and eliminate unreachable library routines (using a conservative approximation
to deal with indirect function calls) and then traversing the resulting whole-program control flow graph to

9



Kernel .text.init section .text section Total
size (bytes) ratio size (bytes) ratio size (bytes) ratio

Original 75,638 1.000 735,139 1.000 810,777 1.000

Auto./Industrial 52899 0.699 548,146 0.746 601,045 0.741
Consumer 52915 0.700 550,607 0.749 603,522 0.744
Network 52899 0.699 548,209 0.746 601,108 0.741
Office 52915 0.700 549,245 0.747 602,160 0.743
Security 52899 0.699 548,868 0.747 601,767 0.742
Telecomm 52899 0.699 548,338 0.746 601,237 0.742
Entertainment 52899 0.699 549,885 0.748 602,784 0.743
Cellphone 52899 0.699 549,060 0.747 601,959 0.742

GEOM, MEAN : 0.699 0.747 0.742

Table 2: compaction result

determine the set of possible system calls. These data are shown in Table 1: the third column of this table
gives the number of different system calls across all of the programs in each set of benchmarks, while the
fourth column gives, for each benchmark set, the number of system calls not occurring in the set of system
calls invoked during the kernel bootup process. Once we havethe system calls that may be invoked by a set
of programs, we use them to identify and eliminate unreachable code in the kernel.

The results of code compaction are shown in Table 2. For each benchmark set, we present three sets
of numbers; these give the amount of compaction achieved forthe.text.init section (the code used
for kernel bootup), the.text section (the kernel code used during steady-state execution), and the total
amount of code (.text.init and.text together). We are able to reduce the size of the kernel bootup
code by 30%, and the steady-state kernel code by just over 25%. Overall, the savings in code size come to
just under 26% on average.

Since the bulk of our code compaction is achieved through theidentification of unreachable code, the
amount of compaction achieved for each set of applications shown above depends on the particular set of
system calls made by the set of application programs. To get an idea of the extent to which our results might
generalize to other sets of embedded applications, we evaluated the “popularity” of different system calls
across the MiBench suite. The popularity of a given system call s in a set of programsP is given by the
fraction of programs inP that uses. Intuitively, if different kinds of applications use very different sets of
system calls, i.e., many system calls have low popularity, then our results may not generalize well; on the
other hand, if different kinds of applications tend to have mostly-similar sets of system calls, then we can
expect these results to generalize. The results are shown inFigure 6. It can be seen that out of some 226
different possible system calls in our system,7, there is a small core of 32 system calls that are used by every
program. Popularity drops off sharply outside this core set. All of our benchmark programs, taken together,
refer to only 76 system calls, i.e., about a third of the totalset of system calls.

This relative uniformity in system call usage across a wide variety of applications helps explain the sur-
prising uniformity of our code compression results across all of the benchmark sets. While the applications
themselves are very different in terms of their nature and code size, the popularity data shown in Figure 6
show that they do not differ from each other hugely in terms oftheir interactions with the operating system
kernel: for example, they typically read data from some files, process that data, and write out the results.

7There were 259 syscall entries in our version of Linux; of these, 33 were not implemented (“sysni syscall”), leaving a total
of 226. Other sources put the number of Linux system calls much higher: e.g., Wikipedia mentions “almost 300” system calls
for Linux, while according tosyscalls(2) in the Linux programmer’s manual, there are some 1,100 system calls listed in
/usr/src/linux/include/asm-*/unistd.h.

10



br
k

cl
os

e
ex

it
fc

nt
l

fc
nt

l6
4

fs
ta

t6
4

ge
tc

w
d

ge
tp

id
ge

tr
lim

it
ki

ll
ls

ee
k

m
m

ap
m

od
ify

_l
dt

m
pr

ot
ec

t
m

re
m

ap
m

un
m

ap
ne

w
fs

ta
t

ne
w

st
at

ol
d_

ge
tr

lim
it

op
en

re
ad

re
ad

lin
k

rt
_s

ig
ac

tio
n

rt
_s

ig
pr

oc
m

as
k

rt
_s

ig
re

tu
rn

si
gr

et
ur

n
so

ck
et

ca
ll

st
at

64
tim

e
w

rit
e

w
rit

ev
du

p
io

ct
l

un
lin

k
ac

ce
ss

ex
ec

ve
fo

rk
tim

es
du

p2
ge

tti
m

eo
fd

ay
pi

pe
re

na
m

e
w

ai
tp

id
ch

m
od

na
no

sl
ee

p
rm

di
r

ut
im

e
um

as
k

st
at

fs
ne

w
un

am
e

ne
w

ls
ta

t
m

m
ap

2
m

kd
ir

ls
ta

t6
4

fc
hm

od
fc

ho
w

n
fc

ho
w

n1
6

ge
te

gi
d

ge
te

gi
d1

6
ge

te
ui

d
ge

te
ui

d1
6

ge
tg

id
ge

tg
id

16
ge

tu
id

ge
tu

id
16

cr
ea

t
flo

ck
fs

yn
c

ftr
un

ca
te

ge
td

en
ts

ge
td

en
ts

64
w

ai
t4

lin
k

lls
ee

k
m

ad
vi

se

system calls

0.0

0.2

0.4

0.6

0.8

1.0
fr

ac
ti

on
 o

f 
be

nc
hm

ar
ks

Figure 6: System call “popularity” in embedded applications

Moreover, in addition to the system calls made by application code, a significant number of system calls
are made from within the kernel itself. For example, the kernel makes 81 different system calls during the
bootup process. The overall result is that the set of “non-bootup” system calls arising in the application code
is relatively small, and does not vary greatly from one benchmark set to another (Table 1, col. 4). Because
of this, the compaction results for the different benchmarksets tend to be similar.

7 Related Work

The work that is closest to ours is that of Chanetet al., who describe a system for code compaction of
the Linux kernel to reduce its memory footprint [5]. Our approach is more general, in that the Diablo
system described by Chanetet al. relies on a modified compiler tool chain and requires specialannotations
(currently manually applied) to deal with hand-coded assembly. Furthermore, the techniques we use, in
particular the use of approximate decompilation for program analysis, are quite different from theirs. Finally,
the code size reductions we obtain, of around 25% on average,are significantly higher than those of Chanet
et al., who report an overall code size reduction of about 19%; while this is not entirely an apples-to-apples
comparison, because the set of application programs—and, therefore, the set of system calls—considered
by Chanetet al. were different from those we considered, it gives an approximate idea of the relative
compaction power of the two approaches.

We are not aware of a great deal of work on binary rewriting of operating systems kernels. Flowerset al.
describe the use of Spike, a binary optimizer for the Compaq Alpha, to optimize the Unix kernel, focusing
in particular on profile-guided code layout [7]. A number of researchers have looked into specializing
operating system kernel code [13, 16, 15]. These generally focused on improving execution speed rather
than reducing code size and therefore used techniques very different from ours.

There is a considerable body of work on code compaction; Beszédeset al. give a comprehensive survey
[4]. Almost all of this work is in the context of application programs in high-level languages and does not
consider the issues that arise when dealing with an OS kernel.

One of the technical issues of considerable importance in code compaction of an OS kernel is that of re-
solving the possible targets of indirect function calls. This problem resembles the problem of identifying the
possible targets of virtual method invocations in object-oriented programs, which has received considerable
attention in the object-oriented community [2, 3, 8, 17]. Much of this work relies on using type information
to resolve the possible targets of a virtual method invocation. We applied this idea of using type informa-
tion to determine possible targets of indirect calls in the Linux kernel but the results were disappointing,
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because the available type information is not discriminating enough to give an acceptable level of precision
(especially when taking into account the possibility of type casts on pointers). The FA analysis proved to
be far more effective: a type-based signature matching analysis we implemented gave, on average, about 96
targets per indirect function call in the Linux kernel; withFA analysis, by contrast, the average number of
targets per indirect call is 10.

8 Conclusions

Because of the limited amount of memory typically availablein embedded devices, it is important to reduce
the memory footprint of the code running on such devices. This paper describes an approach to code
compaction of operating system kernels. We begin with the observation that embedded systems typically
run a small fixed set of applications. This knowledge can be used to identify the minimal functionality
required of the kernel code to support those applications and then to discard unnecessary code. We discuss
a number of technical challenges that have to be addressed inorder to make this work; in particular, we
describe a novel approach of “approximate decompilation” that allows us to apply source-level program
analyses to hand-written assembly code. Our ideas have beenimplemented in a prototype binary rewriting
tool that is able to achieve a code size reduction of over 25% on an already minimally-configured Linux
kernel.
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